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Fast Polynomial Root Finder - Part Five. 
By Henrik Vestermark (hve@hvks.com) 

 

 

Abstract:  
We elaborated in the part five paper on higher order method for finding Polynomial roots and 
devised a modified Durand-Kerner method dealing efficiently with Polynomials with real 
coefficients. This paper is part of a multi-series of papers on using the same framework to 
implement different root finder methods. 
 

Introduction: 
In this paper (part five), we looked at the simultaneous method for polynomial root finders. Two 
methods come to mind. The first one is the Weierstrass method developed in 1891 and later 
rediscovered by Durand and Kerner in the 1960ties. The other method is the Aberth-Erhlich 
method also from 1960ties. Sometimes you see the first method named just as Weierstrass or 
Durand-Kerner or sometimes combined and abbreviated as the WDK method. In this paper, we 
will refer to it as the Durand-Kerner method.  
Both methods are considered to be very robust and stable. The Durand-Kerner method is a 
numerical technique used for simultaneously finding all the roots of a given polynomial. This 
method is particularly valuable in numerical analysis and computational mathematics for its 
efficiency and ability to handle polynomials of high degrees. 
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Durand-Kerner Background 
 
The method was independently developed by two mathematicians: Eugene Durand and Arthur 
Kerner. It improved upon the earlier ideas of Karl Weierstrass, hence its alternative name, the 
Weierstrass method. The Durand-Kerner method is a root-finding algorithm that falls into the 
category of simultaneous iterative methods, distinct from more traditional sequential methods 
like Newton’s method. 
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The Polynomial Problem 
 
Given a polynomial of degree with real or complex coefficients, the challenge is to find all its 
roots, which could also be complex. This problem is central in various fields of science and 
engineering, where determining the roots of polynomials is a frequent necessity. 
 
Method Overview 
 
The Durand-Kerner method starts with an initial guess for each root. These guesses should 
ideally be distinct. The method then iteratively refines these guesses using a specific formula. 
The beauty of this method lies in its simultaneous updating of all root approximations in each 
iteration, leveraging the polynomial’s behavior at multiple points. 
 
Advantages 
 

1. Efficiency: The method can be quite efficient for polynomials of high degrees. 
2. Generality: It applies to both real and complex polynomials. 
3. Simultaneous Convergence: All roots are refined in parallel, leading to a potentially faster 

overall convergence. 
4. Avoid the deflation process as typical e.g. Newton’s method 

 
Considerations 
 
While the Durand-Kerner method is powerful, its performance can depend heavily on the initial 
guesses. Poor choices can lead to slow convergence or sometimes even convergence to incorrect 
values. Additionally, the method can be computationally intensive, especially for polynomials 
with a large number of roots. 
 
Applications 
 
The Durand-Kerner method finds applications in various domains, including control theory, 
signal processing, and computational physics, where solving polynomial equations is a 
fundamental task. 
 
The Durand-Kerner method stands as an elegant and efficient solution to the age-old problem of 
finding polynomial roots, embodying a unique blend of mathematical creativity and 
computational practicality. 
 

The Durand-Kerner Method 
 
The Durand-Kerner method is a method that simultaneously converges to all the roots of the 
Polynomial using the following iteration:  
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𝑥 = 𝑥 −
𝑃(𝑥 )

(𝑥 − 𝑥 )
,

 

 
where xk is the kth approximation of the root, P(xk) is the value of the polynomial at xk, and 

(𝑥 − 𝑥 )
,

 is the product of the differences between xk and the other approximations xj. 

 
The method is also called the Weierstrass method and the corrections factor:  

 𝑊 =
( )

( )
,

 is called the Weierstrass corrections. 

 
In the above Weierstrass (Durand-Kerner) method, the “step size”, (or Wk) for each iteration, 
when updating the roots, does not have a direct geometric interpretation akin to the tangent line 
in Newton’s method. However, we can think about it in terms of moving towards the roots in the 
complex plane: 
 
Each root approximation in the Weierstrass method is a point in the complex plane. During each 
iteration, this point moves closer to the actual root. The “step size” is essentially the distance in 
the complex plane that each root approximation moves during an iteration. 
The step size for a particular root depends not only on the value of the polynomial at that point 
but also on the positions of all other current root approximations. This is unlike Newton’s 
method, where the step for each root is independent of the others. 
There’s no direct equivalent of a tangent line or its intersection with the x-axis, as in Newton’s 
method. Instead, the Weierstrass method’s movement towards the root is based on a more 
complex interplay of all the roots. 
Geometrically, one could visualize the root approximations as points in the complex plane that 
gradually spiral or move in a pattern toward the actual roots of the polynomial. 
 
While the Weierstrass method lacks the straightforward geometric interpretation of Newton’s 
method, it can be visualized as a dynamic process in the complex plane where all root 
approximations simultaneously move towards their respective true roots, influenced by the 
positions of each other. 
 
The Durand-Kerner method has a quadratic convergence rate (the same as Newton's method) and 
has some advantages compared to other root-finding methods. Compared to Newton's method we 
can see from the above formula that we don’t require the need of the Polynomial first derivative. 
Secondly, it is a simultaneous method so we don’t need to worry about dividing out the factors or 
using deflation techniques. and the associated accumulated errors arising from inaccuracy in the 
deflation process. 
 
Since we normally have more than one root, we can write the above equation in a more concise 
form: 
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𝑥
( )

= 𝑥
( )

−
𝑃 𝑥

( )

∏ 𝑥
( )

− 𝑥
( )

,

   𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 0,1, … 

 
Or using the Weierstrass correction 
 

𝑥
( )

= 𝑥
( )

− 𝑊
( )

  𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 0,1, … 
 
As usual, the method has only linear convergence when multiplicity > 1. The starting point used 
in the code example below is primitive as follows: 
 

𝑥
( )

= (0.4 + 𝑖0.9)    𝑖 = 1, … , 𝑛 
 
Take the polynomial: 
  

P(x)=(x-1)(x-2)(x-3)(x-4)=1x4-10x3+35x2-50x+24 
 
 

 
We see the convergence rate approaching a little over 2 in line with the expectation for the 
Durand-Kerner method. Also, notice that it takes around 6 iterations before we begin to see some 
traction, and 9 to 10 iterations are required to reach the desired accuracy. 
 
And the iterations trail towards the roots. 
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We notice that the second root (green path) starts at the complex point (0.4+i0.9) and then goes 
on a longer field trip into the complex plane before gravitating towards the root x=4. The same is 
partly true for the third root (red path) that starts in (-0.7+i0.7) and then goes out in the wrong 
direction, turns around, and navigates towards the root at x=3. This is very typical for the 
Durand-Kerner method in that initially it can go out into a seemingly wild direction but then get 
their act together and move towards the roots. 
 

The issue with multiple roots for the Durand-Kerner Method 
 
The Durand-Kerner also suffers from the issue with multiple roots where the convergence rate 
drops from quadratic (convergence power of 2) to a linear convergence power.  
 
Take the polynomial: 
  

P(x)=(x-2)(x-2)(x-3)(x-4)=1x4-11x3+44x2-76x+48. 
 
That has a double root at x=2 
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We see that after some initial fluctuation, the convergence power stabilized between 1 and 2 with 
slow convergence as a result. We need 23 iterations before we can accept the result. 
 
And the pathway to the roots. 
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We need to implement a modified version that can also cope with the multiple roots issue. 
Luckily the field has been studied and several authors have suggested modifications to improve 
the convergence rate [8]. However, to my knowledge, most of the suggestions only improve the 
convergence rate slightly and lack an efficient handling of the multiple root issues.   
 

Safe Convergence Zone 
The Durand-Kerner method is considered to be very stable and can nearly always converge from 
any start point. I say nearly because it has been documented that you can find a starting point 
where the method will not converge but compared with the Newton method it will be more 
robust and resilient to nearly always find a root regardless of the starting point. With that said it 
should not be compared directly with the Newton method but with the modified Newton version 
layout in part one and part two. If we compare these versions there is no difference in the 
stability and resiliency of both methods. For the Durand-Kerner method in [12], they establish a 
safe convergence zone when: 
 

𝑊( ) <
𝑑( )

2𝑛 + 1
 

 
Where W(k) is the kth iteration Weierstrass corrections, n is the polynomial degree and  
 

𝑑( ) = min 𝑥
( )

− 𝑥
( )  

 
The computation to determine if we are within a safe convergence turns out to be very useful in 
the implementation of the Durand-Kerner method. 
A little side note here is that the above criteria for a safe convergence zone are never reached 
when dealing with multiple roots. Instead, we use a trick that if |P(xk)|<e(1/3), where e is the 
stopping criteria for the polynomial evaluation then we will also consider it to be within the safe 
convergence zone.  
 

Comparing Newton and the Durand-Kerner method 
 
To compare different methods with others we can use a well-known efficiency index to see how 
it stacks up against other derivative-based methods. 

The efficiency index is 𝑞 , where q is the method convergence order and p is the number of 
polynomial evaluations for the method. For the Newton, method p is 2 since we need to evaluate 
both P(z) and P’(z) per iteration, and the Newton method has a convergence order of q=2 so we 

get Efficiency index= 2 = 1.42 

For the Durand-Kerner method, we only evaluate P(x) for each iteration, we get 2 = 2 
Which is larger than the Newton method. 
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The advantage of the Durand-Kerner method is the simultaneous iterations to all roots, it also 
avoids the deflation process that many other methods need to divide one of two roots up in the 
Polynomial. However, one of the disadvantages is that for polynomials with real coefficients, we 
can’t take advantage of complex conjugated roots but need the simultaneous method to find them 
individually. Due to inaccuracy in the process, this can lead to complex roots not strictly being 
complex conjugated roots. Furthermore, the Durand-Kerner method usually requires more 
iterations before traction to a root happens compared to the Newton method. 
 

What to Modify? 
Compared to the Newton method (part two) we can luckily reuse most of the code already 
available with the Newton method. The Horner method for evaluating the Polynomial P(x) is the 
same, the same goes for the Adams test of when P(x) is sufficiently low to accept the root. We 
can skip the deflation process since we don’t need it for the Durand-Kerner method. And 
technically we could also skip the direct solving of the quadratic equation since all roots will be 
found at once.  We therefore have the modified steps for the Durand-Kerner method 
 
The Durand-Kerner steps Include: 

1. Finding an initial point 
2. Executing the Durand-Kerner iteration, including polynomial evaluation via the Horner 

method 
3. Detection of the multiple roots issue 
4. Calculating the final upper bound. (Adam’s Test) 
5. Solving the quadratic equation. Only if the initial polynomial was of degree 2 or lower. 

 
   

Finding the ini al point. 
In Parts One and Two we have established a suitable starting point for a root search so we know 
that a root always lies outside the circle in the complex plane of the starting point. However, we 
are iterating simultaneously towards all roots so we would need to set the initial start guess for 
all the roots. Unfortunately, there is no adequate algorithm to do that. Instead, we use a fixed 
starting point and then distribute the remaining starting point around an outward circle in the 
complex plane. Using the formula: 
 
 xi=(0.4+i0.9)i, for i=0,…,n-1 
 
A similar technique was also suggested in [11] with approximately the same result. 
 
Other starting points e.g. Kalantaris. Kalantaris has a formula for computing an outer circle 
where all the roots are located. A suggested starting point could be an inward/outward circle with 
a starting radius of 2/3 of the Kalantaris circle. It kind of makes sense that you choose this 
technique but the test has shown that it does not reduce the number of iterations in any 
significant way.  
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The modified Durand-Kerner improves the handling of mul ple roots 
As mentioned, before there is no direct modified version of the Durand-Kerner method that can 
deal efficiently with multiple roots. Instead, we can resort to a straightforward solution to that 
problem. When we are in the safe convergence zone we then check if we are dealing with a 
multiple root and if so, we simply apply the modified Newton step for the root under 
computation. This means that we discard the Weierstrass correction for that root and instead use 
the Newton step correction. 
 

𝑥 = 𝑥 − 𝑚
𝑃(𝑥 )

𝑃 (𝑥 )
, 𝑓𝑜𝑟 𝑚 = 1,2, … , 𝑛 

 
As long as P(xk+1) is decreasing. The best Newton steps (best m) are then returned as the step 
size for the root. 
 
However, how do we detect that we are dealing with multiple roots? A simple test is to check the 
convergence rate q given by: 
 

𝑞 =
log (|𝑥 − 𝑥 |)

log (|𝑥 − 𝑥 |)
 

 
For normal convergence towards simple roots the q ~2, however, when approaching multiple 
roots q usually falls in between 1.0 and 1.4 instead of 2, and if we further check that we are 
within the safe convergence zone then we have a pretty accurate detection of a multiple root 
situation.  
 
Now selectively adding the Newton step correction also adds the need to evaluate P’(x) which 
was not needed when using Durand-Kerner unmodified. However, if we need to handle the 
multiple roots effectively, we can use the modified Newton correction in the case of multiple 
roots. In the multiple root example, the number of iterations drops from 23 to 12 iterations which 
is more than justified to add this Newton correction to the method., 
   

A suitable stopping criterion for the simultaneous root search 
We already established a suitable stopping criterion for Polynomials with real coefficients and 
real or complex roots from Part Two.  
Since we are simultaneously iterating toward all the roots at once and these roots can have 
different magnitudes, we can’t just establish a single upper bound for the error in the evaluation 
of the polynomial. We have to carry individual stopping criteria for each root. We can however 
reuse Adam’s test from Part Two applied individually for each root. Since we can’t calculate the 
correct upper bound before we get closer to the roots, we are also using the simple upper bound 
from Part One and Two initially, and when we get closer to the root, we then call Adam’s test for 
each root. The closeness is determined when an approximation to a root z is within the safe 
convergence zone previously established. This test ensures that we calculate the correct upper 
bound and ensure the correct termination of the root search. 
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The Implementation of the Durand-Kerner Algorithm 
We use the following algorithm for the modified Durand-Kerner Algorithm. 

1) Eliminate all zero-roots 
2) If the polynomial degree is less than 3 then solve it directly and exit 
3) Set up the simultaneous roots search 

a. Compute the initial starting point for each x0, x1, …,xn  
b. Compute the initial stopping criteria for each root x0, x1, …,xn 
c. For each iteration k=1,… do 

i. For each root  x0, x1, …,xn 
1. If root xi has been flagged as found then continue to the next root 
2. Compute the Weierstrass correction W(xi) 

3. Compute the next approximation 𝑥( )
= 𝑥

( )
− 𝑊 𝑥

( )  

4. Compute the convergence power q for xi 
5. If within a safe convergence zone and q<1.4 

a. Do a modified Newton multiple root convergence step and 

update 𝑊 𝑥
( )  with the modified Newton step 

6. If within the convergence zone then recalculate the upper bound 
for the root xi 

7. if 𝑥( )
− 𝑊 𝑥

( )
= 𝑥

( )   or P(𝑥( ))<eps then flag the root as 

finished for xi 
ii. Compute if a safe convergence zone has been reached 

d. All root has now been found 
 
 

The C++ code 
The C++ code below finds the Polynomial roots with Polynomial real coefficients using the 
modified Durand-Kerner method.  
 
/* 
 ******************************************************************************* 
 * 
 *                       Copyright (c) 2023 
 *                       Henrik Vestermark 
 *                       Denmark, USA 
 * 
 *                       All Rights Reserved 
 * 
 *   This source file is subject to the terms and conditions of 
 *   Henrik Vestermark Software License Agreement which restricts the manner 
 *   in which it may be used. 
 * 
 ******************************************************************************* 
*/ 
 
/* 
 ******************************************************************************* 
 * 
 * Module name     :   DurandKerner.cpp 
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 * Module ID Nbr   : 
 * Description     :   Solve n degree polynomial using the DUrand-Kerner method 
 * -------------------------------------------------------------------------- 
 * Change Record   : 
 * 
 * Version Author/Date  Description of changes 
 * -------  ------------- ---------------------- 
 * 01.01 HVE/24Nov2023 Initial release 
 * 
 * End of Change Record 
 * -------------------------------------------------------------------------- 
*/ 
 
// define version string  
static char _VDURAND_[] = "@(#)testDurandKerner.cpp 01.01 -- Copyright (C) Henrik 
Vestermark"; 
 
#include <algorithm> 
#include <vector> 
#include <complex> 
#include <limits> 
#include <iostream> 
#include <functional> 
#include <cmath> 
 
using namespace std; 
 
constexpr int       MAX_ITER = 200;  
 
// This is the Durand-Kerner method 
// It simultaneously finds all the roots 
// 
static vector<complex<double>> PolynomialRootsDurandKerner(const vector<double>& 
coefficients) 
{ 
    struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; }; 
    const complex<double> complexzero(0.0); // Complex zero (0+i0) 
    size_t n=coefficients.size()-1;         // Degree of Polynomial p(x)   
    vector<complex<double>> roots;  // Holds the roots of the Polynomial 
    vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z) 
 
    copy(coefficients.begin(), coefficients.end(), coeff.begin()); 
 
    // Step 1 eliminate all simple roots 
    for (; n > 0 && coeff.back() == 0.0; --n) 
        roots.push_back(complexzero);  // Store zero as the root 
    if (n == 0)  // if polynomial empty? 
        return roots; 
 
   // Solve any remaining linear or quadratic polynomial 
   // For Polynomial with real coefficients a[],  
   // The complex solutions are stored in the back of the roots 
    auto quadratic = [&](const std::vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> v; 
        double r; 
 
        // Notice that a[0] is !=0 since roots=zero has already been handle 
        if (n == 1) 
            roots.push_back(complex<double>(-a[1] / a[0], 0)); 
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        else 
        { 
            if (a[1] == 0.0) 
            { 
                r = -a[2] / a[0]; 
                if (r < 0) 
                { 
                    r = sqrt(-r); 
                    v = complex<double>(0, r); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    r = sqrt(r); 
                    roots.push_back(complex<double>(r)); 
                    roots.push_back(complex<double>(-r)); 
                } 
            } 
            else 
            { 
                r = 1.0 - 4.0 * a[0] * a[2] / (a[1] * a[1]); 
                if (r < 0) 
                { 
                    v = complex<double>(-a[1] / (2.0 * a[0]), a[1] * sqrt(-r) / (2.0 * 
a[0])); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    v = complex<double>((-1.0 - sqrt(r)) * a[1] / (2.0 * a[0])); 
                    roots.push_back(v); 
                    v = complex<double>(a[2] / (a[0] * v.real())); 
                    roots.push_back(v); 
                } 
            } 
        } 
        return; 
    }; 
 
    // Solve it directly? 
    if (n <= 2) 
    { 
        quadratic(coeff); 
        return roots; 
    } 
     
    // Evaluate a polynomial with real coefficients a[] at a complex point z and 
    // return the result  
    // This is Horner's methods avoiding complex arithmetic 
    auto horner = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double s = 0.0; 
        double r = a[0]; 
        eval e; 
 
        for (size_t i = 1; i < n; i++) 
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        { 
            double t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
        } 
 
        e.z = z; 
        e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r); 
        e.apz = abs(e.pz); 
        return e; 
    }; 
 
    // Calculate an upper bound for the rounding errors performed in a 
    // polynomial with real coefficient a[] at a complex point z.  
    // (Adam's test) 
    auto upperbound = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double u = sqrt(q); 
        double s = 0.0; 
        double r = a[0]; 
        double e = fabs(r) * (3.5 / 4.5); 
        double t; 
 
        for (size_t i = 1; i < n; i++) 
        { 
            t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
            e = u * e + fabs(t); 
        } 
        t = a[n] + z.real() * r - q * s; 
        e = u * e + fabs(t); 
        e = (4.5 * e - 3.5 * (fabs(t) + fabs(r) * u) + 
            fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 
1); 
 
        return e; 
    }; 
 
    // Do Durand-Kerner iteration for polynomial order higher than 2, 
    // The preliminary stopping value for P(x) 
    const double eps = 4 * n * abs(coeff[n]) * pow((double)_DBL_RADIX, -DBL_MANT_DIG); 
    const double epsLow = pow(eps, 1.0 / 3.0);  
    size_t i; 
    int itercnt;            // Hold the number of iterations per root 
    bool stage1 = true;     // Initially stage 1 is set to true when the convergence 
test is true then stage1 is reset to false 
    complex<double> z;      // Use as temporary variable 
    vector<bool> finish(n, false);  // Vector flag indicates if an individual root 
search is finish 
    vector<double> upper(n, eps);   // The individual upper bound for each root that 
needs to be satisfied  
    vector<complex<double>> W(n);   // Weierstrass correction. (step size) 
    vector<eval> pz;                // vector of P(z) 
    vector<double> coeffprime;      // prime coefficients. Only needed when 
multiplicity>1 
    int found = 0;                  // No of roots founds 
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    vector<bool> NewtonTry(n, false);  // Vector flag indicates if last iteration 
included a Newtonstep (multiplicity>1) 
 
    // n>2 do the Durand-Kerner method 
    // Algorithm only works on polynomials in monic form 
    for (i = 0; i <= n; ++i) 
        coeff[i] /= coeff[0]; 
  
    // Convergence test for the Durand-Kerner method 
    // Max(W)< MIN(R[i]-R[j])/(2n+1), i=0..n-1, j=0..n-1 and i!=j 
    auto TestConvergence = [](const vector<complex<double>>& R, const 
vector<complex<double>>& W) 
    { 
        double wmax = 0.0; 
        double dmin = numeric_limits<double>::infinity(); 
        const size_t n = W.size();  // W.size() and R.size() are identical 
         
        // Compute dmin and wmax 
        for (size_t i = 0; i < n; i++) 
        { 
            wmax = max(wmax, abs(W[i])); 
            for (size_t j = i+1; j < n; ++j) 
                    dmin = std::min(dmin, abs(R[i] - R[j])); 
        } 
        bool isConvergent = (wmax < dmin / (2 * n + 1)); 
        return isConvergent; 
    }; 
 
    // Try multiple Newton Steps when dealing with multiple roots 
    // If there is r multiple roots then the best next step is m=r 
    auto MultipleNewtonSteps = [&](const vector<double>& a, const complex<double>& z, 
const complex<double>& dz) 
    {eval pzbest = horner(a, z - dz); 
    for (int m = 1; m < n - 1; ++m) 
    { 
        eval pztry = horner(a, z - complex<double>(m + 1) * dz); 
        if (pztry.apz >= pzbest.apz) 
            break; // no improvement 
        pzbest = pztry; 
    } 
    return pzbest; 
    }; 
 
    // Set fixed initial start value for each root as an inward spiral from 1 
    z = complex<double>(0.4, 0.9); 
    for (i = 0; i < n; i++) 
    { 
        roots.push_back(z * pow(z, i)); 
        W[i]=roots.back(); 
        pz.push_back(horner(coeff, roots.back())); 
    } 
 
    if (stage1 == TestConvergence(roots, W)) 
        stage1 = !stage1; 
         
    // Start iteration and stop when all roots have been found 
    for (itercnt = 1; found<n && itercnt < MAX_ITER; itercnt++) 
    { 
        double q;               // Convergence power q 
        complex<double> prevW;  // Used for q calculation 
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        for ( i = 0; i < n; ++i)  // Improve each root if not flagged as finish 
        { 
            if (finish[i] == true)  
                continue; 
            bool qcheck = false; 
            // Calculate new root approximation 
            complex<double> w(1); 
            z= roots[i];        // Current root to improve  
             
            // Calculate the Weierstrass modification 
            for (int j = 0; j < n; ++j) 
            {  
                if (i != j) 
                    w *= (z - roots[j]); 
            } 
             
            prevW = W[i];         // Save previous W[i] 
            W[i] = pz[i].pz/(w);  // Compute new W[i]=P(z)/(w) 
                      
            // New root 
            roots[i] -= W[i]; 
            pz[i] = horner(coeff, roots[i]);  // Calculate P(roots[i]) 
            // Check if we need to recalculate a precise upperbound e.g. Adams test 
            if (pz[i].apz < epsLow || stage1 == false) 
            {   // Calculate final upper bound for the root now that we are getting 
close 
                // or convergence test terminates stage1 
                upper[i] = upperbound(coeff, z); 
                qcheck = true; // set to trick the test of the Newton option  
            } 
            // Calculate convergence power q 
            q = log(abs(W[i])) / log(abs(prevW)); 
            // When q<1.4 we need to check for multiplicity>1 using the Newton method 
unless stopping criteria have already been fulfilled 
            // Be aware after one Newton Step the q reflects the convergence power of 
Newton not the Weierstrass step 
            // This can lead to a false not needed Newton try step. 
            if (z - W[i] != z && pz[i].apz >= upper[i] && qcheck && (abs(q) < 1.4 || 
NewtonTry[i])) 
            { 
                if (coeffprime.size() == 0) 
                    // Calculate coefficients of p'(x), only once if needed 
                    for (int j = 0; j < n; ++j) 
                        coeffprime.push_back(coeff[j] * double(n - j)); 
                NewtonTry[i] = false; 
                eval p1z = horner(coeffprime, z), p0z = horner(coeff, z); 
                eval pzbest = MultipleNewtonSteps(coeff, z, p0z.pz / p1z.pz); 
                if (pzbest.apz < pz[i].apz) 
                {  // Newton gave an improvement for multiplicity>1 
                    roots[i] = pzbest.z; 
                    pz[i] = pzbest; 
                    W[i] = pzbest.z - z;  // Save the step size 
                    NewtonTry[i] = true;              
                } 
            } 
            else 
                NewtonTry[i] = false; 
            
            if (z - W[i] == z || pz[i].apz < upper[i]) 
            {   // Root is found 
                eval pz0; 
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                // flag current root as finish 
                finish[i] = true; 
                ++found;    
                // Finalize root 
                z = abs(z.real())>=abs(z.imag())? complex<double>(z.real(),0): 
complex<double>(0,z.imag()); 
                pz0 = horner(coeff, z); 
                if (pz0.apz <= pz[i].apz) 
                { 
                    pz[i] = pz0; 
                    roots[i] = z; 
                } 
            } 
        } 
 
        if (stage1 == TestConvergence(roots, W)) 
            stage1 = !stage1; 
    } 
 
    return roots; 
} 
 
 

Example 1. 
Here is an example of how the above source code is working. 
 
For the real Polynomial: 
+1x^4-10x^3+35x^2-50x+24 
Start Durand-Kerner Itera on for Polynomial=+1x^4-10x^3+35x^2-50x+24 
 Ini al Stop Condi on. |f(z)|<2.13e-14 
 Start: 
 z[1]=1 dz=1.00e+0 |f(z)|=0.0e+0 
 z[2]=(0.4+i0.9) dz=(4.00e-1+i9.00e-1) |f(z)|=2.0e+1 
 z[3]=(-0.7+i0.7) dz=(-6.50e-1+i7.20e-1) |f(z)|=8.7e+1 
 z[4]=(-0.9-i0.3) dz=(-9.08e-1-i2.97e-1) |f(z)|=1.1e+2 
 
Itera on: 1 
 Stop Criteria sa sfied a er 1 Itera on 
 Found a root z[1]=1 |f(x)|=0.00e+0 
 Altera on=0% 
 z[2]=(-4-i8) dz=(4.14e+0+i9.02e+0) |f(z)|=1.1e+4 
 z[3]=(-6+i0.9) dz=(4.89e+0-i1.40e-1) |f(z)|=4.1e+3 
 z[4]=(0.1-i1) dz=(-1.05e+0+i9.56e-1) |f(z)|=4.3e+1 
 
Itera on: 2 
 z[2]=(1e+1-i1e+1) dz=(-1.60e+1+i2.97e+0) |f(z)|=4.8e+4 
 z[3]=(-2+i4) dz=(-3.84e+0-i2.88e+0) |f(z)|=9.9e+2 
 z[4]=(0.5-i1) dz=(-3.41e-1-i2.60e-2) |f(z)|=2.7e+1 
 
Itera on: 3 
 z[2]=(8-i2) dz=(4.25e+0-i8.67e+0) |f(z)|=1.3e+3 
 z[3]=(2+i3) dz=(-3.27e+0+i1.09e+0) |f(z)|=7.8e+1 
 z[4]=(1-i1) dz=(-6.28e-1-i2.13e-1) |f(z)|=9.1e+0 
 
Itera on: 4 
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 z[2]=(5.5-i1.0) dz=(2.58e+0-i1.42e+0) |f(z)|=7.7e+1 
 z[3]=(3+i2) dz=(-9.58e-1+i1.12e+0) |f(z)|=1.2e+1 
 z[4]=(2-i0.6) dz=(-5.74e-1-i4.04e-1) |f(z)|=2.2e+0 
 
Itera on: 5 
 z[2]=(4.4-i0.49) dz=(1.03e+0-i5.02e-1) |f(z)|=8.4e+0 
 z[3]=(3+i0.7) dz=(-3.01e-1+i8.04e-1) |f(z)|=2.2e+0 
 z[4]=(2-i0.2) dz=(-3.17e-1-i3.82e-1) |f(z)|=4.8e-1 
 
Itera on: 6 
 z[2]=(4.0-i0.20) dz=(4.00e-1-i2.95e-1) |f(z)|=1.3e+0 
 z[3]=(3+i0.1) dz=(-1.18e-1+i5.77e-1) |f(z)|=3.1e-1 
 z[4]=(2.0+i0.00025) dz=(-1.28e-2-i2.28e-1) |f(z)|=2.3e-2 
 
Itera on: 7 
 z[2]=(3.98-i0.0185) dz=(4.49e-2-i1.81e-1) |f(z)|=1.6e-1 
 z[3]=(3.0-i0.0031) dz=(-5.83e-2+i1.48e-1) |f(z)|=1.1e-2 
 z[4]=(2.00-i0.000149) dz=(1.18e-2+i3.95e-4) |f(z)|=3.2e-4 
 
Itera on: 8 
 z[2]=(4.000+i0.00001949) dz=(-1.97e-2-i1.85e-2) |f(z)|=8.7e-4 
 z[3]=(3.00+i8.52e-8) dz=(4.26e-3-i3.06e-3) |f(z)|=2.8e-6 
 z[4]=(2.0000-i1.1529e-8) dz=(-6.13e-5-i1.49e-4) |f(z)|=2.4e-8 
 
Itera on: 9 
 Stop Criteria sa sfied a er 9 Itera ons 
 Found a root z[4]=1.9999999999999971 |f(x)|=2.40e-18 
 Altera on=0% 
 z[2]=(4.00000-i3.84657e-11) dz=(1.44e-4+i1.95e-5) |f(z)|=1.2e-9 
 z[3]=(3.000000+i1.619904e-14) dz=(1.39e-6+i8.52e-8) |f(z)|=3.3e-14 
 
Itera on: 10 
 Stop Criteria sa sfied a er 10 Itera ons 
 Found a root z[2]=3.9999999999999964 |f(x)|=2.13e-14 
 Altera on=0% 
 Stop Criteria sa sfied a er 10 Itera ons 
 Found a root z[3]=2.9999999999999947 |f(x)|=6.31e-30 
 Altera on=0% 
 
Using the Durand-Kerner Method, the Solu ons are: 
X1=1.9999999999999971 
X2=2.9999999999999947 
X3=3.9999999999999964 
X4=1 
  

Example 2. 
 
For the real Polynomial: 
+1x^4-8x^3-17x^2-26x-40 
Start Durand-Kerner Itera on for Polynomial=+1x^4-8x^3-17x^2-26x-40 
 Ini al Stop Condi on. |f(z)|<3.55e-14 
 Start: 
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 z[1]=1 dz=1.00e+0 |f(z)|=9.0e+1 
 z[2]=(0.4+i0.9) dz=(4.00e-1+i9.00e-1) |f(z)|=4.7e+1 
 z[3]=(-0.7+i0.7) dz=(-6.50e-1+i7.20e-1) |f(z)|=2.9e+1 
 z[4]=(-0.9-i0.3) dz=(-9.08e-1-i2.97e-1) |f(z)|=2.5e+1 
 
Itera on: 1 
 z[1]=(9+i2e+1) dz=(-7.78e+0-i2.26e+1) |f(z)|=3.3e+5 
 z[2]=(0.1+i2) dz=(2.88e-1-i1.03e+0) |f(z)|=4.4e+1 
 z[3]=(-1+i0.8) dz=(8.08e-1-i9.07e-2) |f(z)|=3.8e+1 
 z[4]=(-0.9-i0.6) dz=(-5.56e-2+i3.28e-1) |f(z)|=2.9e+1 
 
Itera on: 2 
 z[1]=(1e+1-i2) dz=(-2.29e+0+i2.44e+1) |f(z)|=3.5e+3 
 z[2]=(0.1+i1) dz=(1.69e-2+i7.20e-1) |f(z)|=2.5e+1 
 z[3]=(-1-i0.3) dz=(-3.15e-1+i1.15e+0) |f(z)|=2.2e+1 
 z[4]=(2-i2) dz=(-2.50e+0+i1.34e+0) |f(z)|=2.4e+2 
 
Itera on: 3 
 z[1]=(9.9+i0.61) dz=(1.18e+0-i2.36e+0) |f(z)|=7.4e+2 
 z[2]=(0.2+i2) dz=(-8.43e-2-i3.61e-1) |f(z)|=2.7e+1 
 z[3]=(-1.3-i0.13) dz=(1.72e-1-i2.07e-1) |f(z)|=1.5e+1 
 z[4]=(-0.4-i2) dz=(2.08e+0-i4.07e-1) |f(z)|=1.7e+1 
 
Itera on: 4 
 z[1]=(10-i0.025) dz=(-1.12e-1+i6.33e-1) |f(z)|=3.1e+1 
 z[2]=(-0.2+i2) dz=(3.73e-1+i1.23e-3) |f(z)|=1.9e+0 
 z[3]=(-2-i0.03) dz=(3.76e-1-i9.92e-2) |f(z)|=2.8e+0 
 z[4]=(-0.18-i1.6) dz=(-2.53e-1-i1.56e-3) |f(z)|=5.2e-1 
 
Itera on: 5 
 z[1]=(10.00-i0.0001396) dz=(2.37e-3-i2.50e-2) |f(z)|=1.8e-1 
 z[2]=(-0.175+i1.55) dz=(-1.77e-2+i2.03e-2) |f(z)|=4.8e-2 
 z[3]=(-1.7+i0.000043) dz=(-3.97e-2-i3.07e-2) |f(z)|=9.0e-3 
 z[4]=(-0.175-i1.55) dz=(-1.54e-3-i7.45e-3) |f(z)|=1.6e-4 
 
Itera on: 6 
 z[1]=(10.0000-i1.10034e-8) dz=(5.34e-5-i1.40e-4) |f(z)|=1.5e-5 
 z[2]=(-0.1747+i1.547) dz=(-3.62e-4+i5.99e-4) |f(z)|=3.8e-6 
 z[3]=(-1.6506+i1.1970e-10) dz=(-1.63e-4+i4.35e-5) |f(z)|=9.8e-9 
 z[4]=(-0.1746854-i1.546869) dz=(6.66e-7-i2.18e-6) |f(z)|=2.8e-12 
 
Itera on: 7 
 Stop Criteria sa sfied a er 7 Itera ons 
 Found a root z[2]=(-0.17468540428030596+i1.5468688872313963) |f(x)|=7.11e-15 
 Altera on=0% 
 Stop Criteria sa sfied a er 7 Itera ons 
 Found a root z[3]=-1.6506291914393882 |f(x)|=2.13e-14 
 Altera on=0% 
 Stop Criteria sa sfied a er 7 Itera ons 
 Found a root z[4]=(-0.17468540428030596-i1.5468688872313963) |f(x)|=7.11e-15 
 Altera on=0% 
 z[1]=(10.00000000+i4.467037524e-17) dz=(-4.71e-9-i1.10e-8) |f(z)|=5.5e-12 
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Itera on: 8 
 Stop Criteria sa sfied a er 8 Itera ons 
 Found a root z[1]=10 |f(x)|=1.90e-28 
 Altera on=0% 
 
Using the Durand-Kerner Method, the Solu ons are: 
X1=(-0.17468540428030596-i1.5468688872313963) 
X2=-1.6506291914393882 
X3=(-0.17468540428030596+i1.5468688872313963) 
X4=10 
 

Other Weierstrass-like simultaneous methods without the use of the 
derivatives 
 
There are a few spin-off methods from the Durand-Kerner. There is Tanabe's [12] third-order 
method: 
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Which offers a third-order convergence rate. 
 
And there is Nourein [12] a fourth-order method also based on the Wierstrass corrections: 
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With the Durand-Kerner present here it is relatively simple to implement the two spins-off 
method.  
 

Aberth-Erhlich simultaneous method 
Another closely related method is the Aberth-Erhlich from 1967 [13]. This method also finds all 
the roots simultaneously however requires the use of the Polynomial first derivate P’(x) 
 
It is a very robust method and has been implemented in the MPSolve software package. It is a 
third-order convergence method although it only approaches roots with multiplicity greater than 

one with linear convergence. Aberth-Ehrlich efficiency index is 3 = 1.73 
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Aberth in his original paper [13] also describes suitable starting points for all roots.  
 

Recommendation 
Although the efficiency index is higher for the Durand-Kerner than for Newton’s method it is 
generally not recommended to use the modified Durand-Kerner method over the Newton’s 
method. The reason in my viewpoint is that the modified Newton method presented in part One 
and part two is usually much faster to get a tracking to a root and therefore use fewer iterations 
than Durand-Kerner. I recommend sticking with the Newton method presented in Parts One and 
Two. However, if you decide to use the Durand-Kerner it is still a solid choice of a good and 
efficient polynomial root finder method. 
 

Conclusion 
We have presented a refined Durand-Kerner method, building upon the framework established in 
part one and part two, despite the Durand-Kerner being quite different. Part Six will demonstrate 
the ease of integrating alternative multi-point methods. A web-based polynomial solver 
showcasing these various methods is available for further exploration and can be found on 
Polynomial roots that demonstrate many of these methods in action. 
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