
Fast Polynomial Root Finder -Part Five

Page | 1 18 December 2023

Fast Polynomial Root Finder - Part Five.
By Henrik Vestermark (hve@hvks.com)

Abstract:
We elaborated in the part five paper on higher order method for finding Polynomial roots and
devised a modified Durand-Kerner method dealing efficiently with Polynomials with real
coefficients. This paper is part of a multi-series of papers on using the same framework to
implement different root finder methods.

Introduction:
In this paper (part five), we looked at the simultaneous method for polynomial root finders. Two
methods come to mind. The first one is the Weierstrass method developed in 1891 and later
rediscovered by Durand and Kerner in the 1960ties. The other method is the Aberth-Erhlich
method also from 1960ties. Sometimes you see the first method named just as Weierstrass or
Durand-Kerner or sometimes combined and abbreviated as the WDK method. In this paper, we
will refer to it as the Durand-Kerner method.
Both methods are considered to be very robust and stable. The Durand-Kerner method is a
numerical technique used for simultaneously finding all the roots of a given polynomial. This
method is particularly valuable in numerical analysis and computational mathematics for its
efficiency and ability to handle polynomials of high degrees.

Fast Polynomial Root Finder -Part Five

Page | 2 18 December 2023

Contents
Abstract: .. 1

Introduction: .. 1

Durand-Kerner Background.. 2

The Polynomial Problem .. 3

Method Overview ... 3

Advantages .. 3

Considerations... 3

Applications .. 3

The Durand-Kerner Method ... 3

The issue with multiple roots for the Durand-Kerner Method ... 6

Safe Convergence Zone .. 8

Comparing Newton and the Durand-Kerner method .. 8

What to Modify? ... 9

Finding the initial point. .. 9

The modified Durand-Kerner improves the handling of multiple roots 10

A suitable stopping criterion for the simultaneous root search ... 10

The Implementation of the Durand-Kerner Algorithm ... 11

The C++ code .. 11

Example 1. .. 17

Example 2. .. 18

Other Weierstrass-like simultaneous methods without the use of the derivatives........................ 20

Aberth-Erhlich simultaneous method ... 20

Recommendation .. 21

Conclusion .. 21

Reference .. 21

Durand-Kerner Background

The method was independently developed by two mathematicians: Eugene Durand and Arthur
Kerner. It improved upon the earlier ideas of Karl Weierstrass, hence its alternative name, the
Weierstrass method. The Durand-Kerner method is a root-finding algorithm that falls into the
category of simultaneous iterative methods, distinct from more traditional sequential methods
like Newton’s method.

Fast Polynomial Root Finder -Part Five

Page | 3 18 December 2023

The Polynomial Problem

Given a polynomial of degree with real or complex coefficients, the challenge is to find all its
roots, which could also be complex. This problem is central in various fields of science and
engineering, where determining the roots of polynomials is a frequent necessity.

Method Overview

The Durand-Kerner method starts with an initial guess for each root. These guesses should
ideally be distinct. The method then iteratively refines these guesses using a specific formula.
The beauty of this method lies in its simultaneous updating of all root approximations in each
iteration, leveraging the polynomial’s behavior at multiple points.

Advantages

1. Efficiency: The method can be quite efficient for polynomials of high degrees.
2. Generality: It applies to both real and complex polynomials.
3. Simultaneous Convergence: All roots are refined in parallel, leading to a potentially faster

overall convergence.
4. Avoid the deflation process as typical e.g. Newton’s method

Considerations

While the Durand-Kerner method is powerful, its performance can depend heavily on the initial
guesses. Poor choices can lead to slow convergence or sometimes even convergence to incorrect
values. Additionally, the method can be computationally intensive, especially for polynomials
with a large number of roots.

Applications

The Durand-Kerner method finds applications in various domains, including control theory,
signal processing, and computational physics, where solving polynomial equations is a
fundamental task.

The Durand-Kerner method stands as an elegant and efficient solution to the age-old problem of
finding polynomial roots, embodying a unique blend of mathematical creativity and
computational practicality.

The Durand-Kerner Method

The Durand-Kerner method is a method that simultaneously converges to all the roots of the
Polynomial using the following iteration:

Fast Polynomial Root Finder -Part Five

Page | 4 18 December 2023

𝑥௞ାଵ = 𝑥௞ −
𝑃(𝑥௞)

ෑ (𝑥௞ − 𝑥௝)
௡

௝ୀଵ,௝ஷ௞

where xk is the kth approximation of the root, P(xk) is the value of the polynomial at xk, and

ෑ (𝑥௞ − 𝑥௝)
௡

௝ୀଵ,௝ஷ௞
 is the product of the differences between xk and the other approximations xj.

The method is also called the Weierstrass method and the corrections factor:

 𝑊௞ =
௉(௫ೖ)

ෑ (௫ೖି௫ೕ)
೙

ೕసభ,ೕಯೖ

 is called the Weierstrass corrections.

In the above Weierstrass (Durand-Kerner) method, the “step size”, (or Wk) for each iteration,
when updating the roots, does not have a direct geometric interpretation akin to the tangent line
in Newton’s method. However, we can think about it in terms of moving towards the roots in the
complex plane:

Each root approximation in the Weierstrass method is a point in the complex plane. During each
iteration, this point moves closer to the actual root. The “step size” is essentially the distance in
the complex plane that each root approximation moves during an iteration.
The step size for a particular root depends not only on the value of the polynomial at that point
but also on the positions of all other current root approximations. This is unlike Newton’s
method, where the step for each root is independent of the others.
There’s no direct equivalent of a tangent line or its intersection with the x-axis, as in Newton’s
method. Instead, the Weierstrass method’s movement towards the root is based on a more
complex interplay of all the roots.
Geometrically, one could visualize the root approximations as points in the complex plane that
gradually spiral or move in a pattern toward the actual roots of the polynomial.

While the Weierstrass method lacks the straightforward geometric interpretation of Newton’s
method, it can be visualized as a dynamic process in the complex plane where all root
approximations simultaneously move towards their respective true roots, influenced by the
positions of each other.

The Durand-Kerner method has a quadratic convergence rate (the same as Newton's method) and
has some advantages compared to other root-finding methods. Compared to Newton's method we
can see from the above formula that we don’t require the need of the Polynomial first derivative.
Secondly, it is a simultaneous method so we don’t need to worry about dividing out the factors or
using deflation techniques. and the associated accumulated errors arising from inaccuracy in the
deflation process.

Since we normally have more than one root, we can write the above equation in a more concise
form:

Fast Polynomial Root Finder -Part Five

Page | 5 18 December 2023

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

−
𝑃ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑥௝
(௞)

ቁ௡
௝ୀଵ,௝ஷ௜

 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 0,1, …

Or using the Weierstrass correction

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

− 𝑊௜
(௞)

 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 0,1, …

As usual, the method has only linear convergence when multiplicity > 1. The starting point used
in the code example below is primitive as follows:

𝑥௜
(଴)

= (0.4 + 𝑖0.9)௜ିଵ 𝑖 = 1, … , 𝑛

Take the polynomial:

P(x)=(x-1)(x-2)(x-3)(x-4)=1x4-10x3+35x2-50x+24

We see the convergence rate approaching a little over 2 in line with the expectation for the
Durand-Kerner method. Also, notice that it takes around 6 iterations before we begin to see some
traction, and 9 to 10 iterations are required to reach the desired accuracy.

And the iterations trail towards the roots.

Fast Polynomial Root Finder -Part Five

Page | 6 18 December 2023

We notice that the second root (green path) starts at the complex point (0.4+i0.9) and then goes
on a longer field trip into the complex plane before gravitating towards the root x=4. The same is
partly true for the third root (red path) that starts in (-0.7+i0.7) and then goes out in the wrong
direction, turns around, and navigates towards the root at x=3. This is very typical for the
Durand-Kerner method in that initially it can go out into a seemingly wild direction but then get
their act together and move towards the roots.

The issue with multiple roots for the Durand-Kerner Method

The Durand-Kerner also suffers from the issue with multiple roots where the convergence rate
drops from quadratic (convergence power of 2) to a linear convergence power.

Take the polynomial:

P(x)=(x-2)(x-2)(x-3)(x-4)=1x4-11x3+44x2-76x+48.

That has a double root at x=2

Fast Polynomial Root Finder -Part Five

Page | 7 18 December 2023

We see that after some initial fluctuation, the convergence power stabilized between 1 and 2 with
slow convergence as a result. We need 23 iterations before we can accept the result.

And the pathway to the roots.

Fast Polynomial Root Finder -Part Five

Page | 8 18 December 2023

We need to implement a modified version that can also cope with the multiple roots issue.
Luckily the field has been studied and several authors have suggested modifications to improve
the convergence rate [8]. However, to my knowledge, most of the suggestions only improve the
convergence rate slightly and lack an efficient handling of the multiple root issues.

Safe Convergence Zone
The Durand-Kerner method is considered to be very stable and can nearly always converge from
any start point. I say nearly because it has been documented that you can find a starting point
where the method will not converge but compared with the Newton method it will be more
robust and resilient to nearly always find a root regardless of the starting point. With that said it
should not be compared directly with the Newton method but with the modified Newton version
layout in part one and part two. If we compare these versions there is no difference in the
stability and resiliency of both methods. For the Durand-Kerner method in [12], they establish a
safe convergence zone when:

𝑊(௞) <
𝑑(௞)

2𝑛 + 1

Where W(k) is the kth iteration Weierstrass corrections, n is the polynomial degree and

𝑑(௞) = min
௝ஷ௜

ቚ𝑥௜
(௞)

− 𝑥௝
(௞)

ቚ

The computation to determine if we are within a safe convergence turns out to be very useful in
the implementation of the Durand-Kerner method.
A little side note here is that the above criteria for a safe convergence zone are never reached
when dealing with multiple roots. Instead, we use a trick that if |P(xk)|<e(1/3), where e is the
stopping criteria for the polynomial evaluation then we will also consider it to be within the safe
convergence zone.

Comparing Newton and the Durand-Kerner method

To compare different methods with others we can use a well-known efficiency index to see how
it stacks up against other derivative-based methods.

The efficiency index is 𝑞
భ

೛, where q is the method convergence order and p is the number of
polynomial evaluations for the method. For the Newton, method p is 2 since we need to evaluate
both P(z) and P’(z) per iteration, and the Newton method has a convergence order of q=2 so we

get Efficiency index= 2
భ

మ = 1.42

For the Durand-Kerner method, we only evaluate P(x) for each iteration, we get 2
భ

భ = 2
Which is larger than the Newton method.

Fast Polynomial Root Finder -Part Five

Page | 9 18 December 2023

The advantage of the Durand-Kerner method is the simultaneous iterations to all roots, it also
avoids the deflation process that many other methods need to divide one of two roots up in the
Polynomial. However, one of the disadvantages is that for polynomials with real coefficients, we
can’t take advantage of complex conjugated roots but need the simultaneous method to find them
individually. Due to inaccuracy in the process, this can lead to complex roots not strictly being
complex conjugated roots. Furthermore, the Durand-Kerner method usually requires more
iterations before traction to a root happens compared to the Newton method.

What to Modify?
Compared to the Newton method (part two) we can luckily reuse most of the code already
available with the Newton method. The Horner method for evaluating the Polynomial P(x) is the
same, the same goes for the Adams test of when P(x) is sufficiently low to accept the root. We
can skip the deflation process since we don’t need it for the Durand-Kerner method. And
technically we could also skip the direct solving of the quadratic equation since all roots will be
found at once. We therefore have the modified steps for the Durand-Kerner method

The Durand-Kerner steps Include:

1. Finding an initial point
2. Executing the Durand-Kerner iteration, including polynomial evaluation via the Horner

method
3. Detection of the multiple roots issue
4. Calculating the final upper bound. (Adam’s Test)
5. Solving the quadratic equation. Only if the initial polynomial was of degree 2 or lower.

Finding the iniƟal point.
In Parts One and Two we have established a suitable starting point for a root search so we know
that a root always lies outside the circle in the complex plane of the starting point. However, we
are iterating simultaneously towards all roots so we would need to set the initial start guess for
all the roots. Unfortunately, there is no adequate algorithm to do that. Instead, we use a fixed
starting point and then distribute the remaining starting point around an outward circle in the
complex plane. Using the formula:

 xi=(0.4+i0.9)i, for i=0,…,n-1

A similar technique was also suggested in [11] with approximately the same result.

Other starting points e.g. Kalantaris. Kalantaris has a formula for computing an outer circle
where all the roots are located. A suggested starting point could be an inward/outward circle with
a starting radius of 2/3 of the Kalantaris circle. It kind of makes sense that you choose this
technique but the test has shown that it does not reduce the number of iterations in any
significant way.

Fast Polynomial Root Finder -Part Five

Page | 10 18 December 2023

The modified Durand-Kerner improves the handling of mulƟple roots
As mentioned, before there is no direct modified version of the Durand-Kerner method that can
deal efficiently with multiple roots. Instead, we can resort to a straightforward solution to that
problem. When we are in the safe convergence zone we then check if we are dealing with a
multiple root and if so, we simply apply the modified Newton step for the root under
computation. This means that we discard the Weierstrass correction for that root and instead use
the Newton step correction.

𝑥௞ାଵ = 𝑥௞ − 𝑚
𝑃(𝑥௞)

𝑃ᇱ(𝑥௞)
, 𝑓𝑜𝑟 𝑚 = 1,2, … , 𝑛

As long as P(xk+1) is decreasing. The best Newton steps (best m) are then returned as the step
size for the root.

However, how do we detect that we are dealing with multiple roots? A simple test is to check the
convergence rate q given by:

𝑞 =
log (|𝑥௞ − 𝑥௞ିଵ|)

log (|𝑥௞ିଵ − 𝑥௞ିଶ|)

For normal convergence towards simple roots the q ~2, however, when approaching multiple
roots q usually falls in between 1.0 and 1.4 instead of 2, and if we further check that we are
within the safe convergence zone then we have a pretty accurate detection of a multiple root
situation.

Now selectively adding the Newton step correction also adds the need to evaluate P’(x) which
was not needed when using Durand-Kerner unmodified. However, if we need to handle the
multiple roots effectively, we can use the modified Newton correction in the case of multiple
roots. In the multiple root example, the number of iterations drops from 23 to 12 iterations which
is more than justified to add this Newton correction to the method.,

A suitable stopping criterion for the simultaneous root search
We already established a suitable stopping criterion for Polynomials with real coefficients and
real or complex roots from Part Two.
Since we are simultaneously iterating toward all the roots at once and these roots can have
different magnitudes, we can’t just establish a single upper bound for the error in the evaluation
of the polynomial. We have to carry individual stopping criteria for each root. We can however
reuse Adam’s test from Part Two applied individually for each root. Since we can’t calculate the
correct upper bound before we get closer to the roots, we are also using the simple upper bound
from Part One and Two initially, and when we get closer to the root, we then call Adam’s test for
each root. The closeness is determined when an approximation to a root z is within the safe
convergence zone previously established. This test ensures that we calculate the correct upper
bound and ensure the correct termination of the root search.

Fast Polynomial Root Finder -Part Five

Page | 11 18 December 2023

The Implementation of the Durand-Kerner Algorithm
We use the following algorithm for the modified Durand-Kerner Algorithm.

1) Eliminate all zero-roots
2) If the polynomial degree is less than 3 then solve it directly and exit
3) Set up the simultaneous roots search

a. Compute the initial starting point for each x0, x1, …,xn
b. Compute the initial stopping criteria for each root x0, x1, …,xn
c. For each iteration k=1,… do

i. For each root x0, x1, …,xn
1. If root xi has been flagged as found then continue to the next root
2. Compute the Weierstrass correction W(xi)

3. Compute the next approximation 𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

− 𝑊ቀ𝑥௜
(௞)

ቁ

4. Compute the convergence power q for xi
5. If within a safe convergence zone and q<1.4

a. Do a modified Newton multiple root convergence step and

update 𝑊ቀ𝑥௜
(௞)

ቁ with the modified Newton step

6. If within the convergence zone then recalculate the upper bound
for the root xi

7. if 𝑥௜
(௞)

− 𝑊ቀ𝑥௜
(௞)

ቁ = 𝑥௜
(௞) or P(𝑥௜

(௞))<eps then flag the root as

finished for xi
ii. Compute if a safe convergence zone has been reached

d. All root has now been found

The C++ code
The C++ code below finds the Polynomial roots with Polynomial real coefficients using the
modified Durand-Kerner method.

/*

 *
 * Copyright (c) 2023
 * Henrik Vestermark
 * Denmark, USA
 *
 * All Rights Reserved
 *
 * This source file is subject to the terms and conditions of
 * Henrik Vestermark Software License Agreement which restricts the manner
 * in which it may be used.
 *

*/

/*

 *
 * Module name : DurandKerner.cpp

Fast Polynomial Root Finder -Part Five

Page | 12 18 December 2023

 * Module ID Nbr :
 * Description : Solve n degree polynomial using the DUrand-Kerner method
 * --
 * Change Record :
 *
 * Version Author/Date Description of changes
 * ------- ------------- ----------------------
 * 01.01 HVE/24Nov2023 Initial release
 *
 * End of Change Record
 * --
*/

// define version string
static char _VDURAND_[] = "@(#)testDurandKerner.cpp 01.01 -- Copyright (C) Henrik
Vestermark";

#include <algorithm>
#include <vector>
#include <complex>
#include <limits>
#include <iostream>
#include <functional>
#include <cmath>

using namespace std;

constexpr int MAX_ITER = 200;

// This is the Durand-Kerner method
// It simultaneously finds all the roots
//
static vector<complex<double>> PolynomialRootsDurandKerner(const vector<double>&
coefficients)
{
 struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; };
 const complex<double> complexzero(0.0); // Complex zero (0+i0)
 size_t n=coefficients.size()-1; // Degree of Polynomial p(x)
 vector<complex<double>> roots; // Holds the roots of the Polynomial
 vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z)

 copy(coefficients.begin(), coefficients.end(), coeff.begin());

 // Step 1 eliminate all simple roots
 for (; n > 0 && coeff.back() == 0.0; --n)
 roots.push_back(complexzero); // Store zero as the root
 if (n == 0) // if polynomial empty?
 return roots;

 // Solve any remaining linear or quadratic polynomial
 // For Polynomial with real coefficients a[],
 // The complex solutions are stored in the back of the roots
 auto quadratic = [&](const std::vector<double>& a)
 {
 const size_t n = a.size() - 1;
 complex<double> v;
 double r;

 // Notice that a[0] is !=0 since roots=zero has already been handle
 if (n == 1)
 roots.push_back(complex<double>(-a[1] / a[0], 0));

Fast Polynomial Root Finder -Part Five

Page | 13 18 December 2023

 else
 {
 if (a[1] == 0.0)
 {
 r = -a[2] / a[0];
 if (r < 0)
 {
 r = sqrt(-r);
 v = complex<double>(0, r);
 roots.push_back(v);
 roots.push_back(conj(v));
 }
 else
 {
 r = sqrt(r);
 roots.push_back(complex<double>(r));
 roots.push_back(complex<double>(-r));
 }
 }
 else
 {
 r = 1.0 - 4.0 * a[0] * a[2] / (a[1] * a[1]);
 if (r < 0)
 {
 v = complex<double>(-a[1] / (2.0 * a[0]), a[1] * sqrt(-r) / (2.0 *
a[0]));
 roots.push_back(v);
 roots.push_back(conj(v));
 }
 else
 {
 v = complex<double>((-1.0 - sqrt(r)) * a[1] / (2.0 * a[0]));
 roots.push_back(v);
 v = complex<double>(a[2] / (a[0] * v.real()));
 roots.push_back(v);
 }
 }
 }
 return;
 };

 // Solve it directly?
 if (n <= 2)
 {
 quadratic(coeff);
 return roots;
 }

 // Evaluate a polynomial with real coefficients a[] at a complex point z and
 // return the result
 // This is Horner's methods avoiding complex arithmetic
 auto horner = [](const vector<double>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 double p = -2.0 * z.real();
 double q = norm(z);
 double s = 0.0;
 double r = a[0];
 eval e;

 for (size_t i = 1; i < n; i++)

Fast Polynomial Root Finder -Part Five

Page | 14 18 December 2023

 {
 double t = a[i] - p * r - q * s;
 s = r;
 r = t;
 }

 e.z = z;
 e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r);
 e.apz = abs(e.pz);
 return e;
 };

 // Calculate an upper bound for the rounding errors performed in a
 // polynomial with real coefficient a[] at a complex point z.
 // (Adam's test)
 auto upperbound = [](const vector<double>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 double p = -2.0 * z.real();
 double q = norm(z);
 double u = sqrt(q);
 double s = 0.0;
 double r = a[0];
 double e = fabs(r) * (3.5 / 4.5);
 double t;

 for (size_t i = 1; i < n; i++)
 {
 t = a[i] - p * r - q * s;
 s = r;
 r = t;
 e = u * e + fabs(t);
 }
 t = a[n] + z.real() * r - q * s;
 e = u * e + fabs(t);
 e = (4.5 * e - 3.5 * (fabs(t) + fabs(r) * u) +
 fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG +
1);

 return e;
 };

 // Do Durand-Kerner iteration for polynomial order higher than 2,
 // The preliminary stopping value for P(x)
 const double eps = 4 * n * abs(coeff[n]) * pow((double)_DBL_RADIX, -DBL_MANT_DIG);
 const double epsLow = pow(eps, 1.0 / 3.0);
 size_t i;
 int itercnt; // Hold the number of iterations per root
 bool stage1 = true; // Initially stage 1 is set to true when the convergence
test is true then stage1 is reset to false
 complex<double> z; // Use as temporary variable
 vector<bool> finish(n, false); // Vector flag indicates if an individual root
search is finish
 vector<double> upper(n, eps); // The individual upper bound for each root that
needs to be satisfied
 vector<complex<double>> W(n); // Weierstrass correction. (step size)
 vector<eval> pz; // vector of P(z)
 vector<double> coeffprime; // prime coefficients. Only needed when
multiplicity>1
 int found = 0; // No of roots founds

Fast Polynomial Root Finder -Part Five

Page | 15 18 December 2023

 vector<bool> NewtonTry(n, false); // Vector flag indicates if last iteration
included a Newtonstep (multiplicity>1)

 // n>2 do the Durand-Kerner method
 // Algorithm only works on polynomials in monic form
 for (i = 0; i <= n; ++i)
 coeff[i] /= coeff[0];

 // Convergence test for the Durand-Kerner method
 // Max(W)< MIN(R[i]-R[j])/(2n+1), i=0..n-1, j=0..n-1 and i!=j
 auto TestConvergence = [](const vector<complex<double>>& R, const
vector<complex<double>>& W)
 {
 double wmax = 0.0;
 double dmin = numeric_limits<double>::infinity();
 const size_t n = W.size(); // W.size() and R.size() are identical

 // Compute dmin and wmax
 for (size_t i = 0; i < n; i++)
 {
 wmax = max(wmax, abs(W[i]));
 for (size_t j = i+1; j < n; ++j)
 dmin = std::min(dmin, abs(R[i] - R[j]));
 }
 bool isConvergent = (wmax < dmin / (2 * n + 1));
 return isConvergent;
 };

 // Try multiple Newton Steps when dealing with multiple roots
 // If there is r multiple roots then the best next step is m=r
 auto MultipleNewtonSteps = [&](const vector<double>& a, const complex<double>& z,
const complex<double>& dz)
 {eval pzbest = horner(a, z - dz);
 for (int m = 1; m < n - 1; ++m)
 {
 eval pztry = horner(a, z - complex<double>(m + 1) * dz);
 if (pztry.apz >= pzbest.apz)
 break; // no improvement
 pzbest = pztry;
 }
 return pzbest;
 };

 // Set fixed initial start value for each root as an inward spiral from 1
 z = complex<double>(0.4, 0.9);
 for (i = 0; i < n; i++)
 {
 roots.push_back(z * pow(z, i));
 W[i]=roots.back();
 pz.push_back(horner(coeff, roots.back()));
 }

 if (stage1 == TestConvergence(roots, W))
 stage1 = !stage1;

 // Start iteration and stop when all roots have been found
 for (itercnt = 1; found<n && itercnt < MAX_ITER; itercnt++)
 {
 double q; // Convergence power q
 complex<double> prevW; // Used for q calculation

Fast Polynomial Root Finder -Part Five

Page | 16 18 December 2023

 for (i = 0; i < n; ++i) // Improve each root if not flagged as finish
 {
 if (finish[i] == true)
 continue;
 bool qcheck = false;
 // Calculate new root approximation
 complex<double> w(1);
 z= roots[i]; // Current root to improve

 // Calculate the Weierstrass modification
 for (int j = 0; j < n; ++j)
 {
 if (i != j)
 w *= (z - roots[j]);
 }

 prevW = W[i]; // Save previous W[i]
 W[i] = pz[i].pz/(w); // Compute new W[i]=P(z)/(w)

 // New root
 roots[i] -= W[i];
 pz[i] = horner(coeff, roots[i]); // Calculate P(roots[i])
 // Check if we need to recalculate a precise upperbound e.g. Adams test
 if (pz[i].apz < epsLow || stage1 == false)
 { // Calculate final upper bound for the root now that we are getting
close
 // or convergence test terminates stage1
 upper[i] = upperbound(coeff, z);
 qcheck = true; // set to trick the test of the Newton option
 }
 // Calculate convergence power q
 q = log(abs(W[i])) / log(abs(prevW));
 // When q<1.4 we need to check for multiplicity>1 using the Newton method
unless stopping criteria have already been fulfilled
 // Be aware after one Newton Step the q reflects the convergence power of
Newton not the Weierstrass step
 // This can lead to a false not needed Newton try step.
 if (z - W[i] != z && pz[i].apz >= upper[i] && qcheck && (abs(q) < 1.4 ||
NewtonTry[i]))
 {
 if (coeffprime.size() == 0)
 // Calculate coefficients of p'(x), only once if needed
 for (int j = 0; j < n; ++j)
 coeffprime.push_back(coeff[j] * double(n - j));
 NewtonTry[i] = false;
 eval p1z = horner(coeffprime, z), p0z = horner(coeff, z);
 eval pzbest = MultipleNewtonSteps(coeff, z, p0z.pz / p1z.pz);
 if (pzbest.apz < pz[i].apz)
 { // Newton gave an improvement for multiplicity>1
 roots[i] = pzbest.z;
 pz[i] = pzbest;
 W[i] = pzbest.z - z; // Save the step size
 NewtonTry[i] = true;
 }
 }
 else
 NewtonTry[i] = false;

 if (z - W[i] == z || pz[i].apz < upper[i])
 { // Root is found
 eval pz0;

Fast Polynomial Root Finder -Part Five

Page | 17 18 December 2023

 // flag current root as finish
 finish[i] = true;
 ++found;
 // Finalize root
 z = abs(z.real())>=abs(z.imag())? complex<double>(z.real(),0):
complex<double>(0,z.imag());
 pz0 = horner(coeff, z);
 if (pz0.apz <= pz[i].apz)
 {
 pz[i] = pz0;
 roots[i] = z;
 }
 }
 }

 if (stage1 == TestConvergence(roots, W))
 stage1 = !stage1;
 }

 return roots;
}

Example 1.
Here is an example of how the above source code is working.

For the real Polynomial:
+1x^4-10x^3+35x^2-50x+24
Start Durand-Kerner IteraƟon for Polynomial=+1x^4-10x^3+35x^2-50x+24
 IniƟal Stop CondiƟon. |f(z)|<2.13e-14
 Start:
 z[1]=1 dz=1.00e+0 |f(z)|=0.0e+0
 z[2]=(0.4+i0.9) dz=(4.00e-1+i9.00e-1) |f(z)|=2.0e+1
 z[3]=(-0.7+i0.7) dz=(-6.50e-1+i7.20e-1) |f(z)|=8.7e+1
 z[4]=(-0.9-i0.3) dz=(-9.08e-1-i2.97e-1) |f(z)|=1.1e+2

IteraƟon: 1
 Stop Criteria saƟsfied aŌer 1 IteraƟon
 Found a root z[1]=1 |f(x)|=0.00e+0
 AlteraƟon=0%
 z[2]=(-4-i8) dz=(4.14e+0+i9.02e+0) |f(z)|=1.1e+4
 z[3]=(-6+i0.9) dz=(4.89e+0-i1.40e-1) |f(z)|=4.1e+3
 z[4]=(0.1-i1) dz=(-1.05e+0+i9.56e-1) |f(z)|=4.3e+1

IteraƟon: 2
 z[2]=(1e+1-i1e+1) dz=(-1.60e+1+i2.97e+0) |f(z)|=4.8e+4
 z[3]=(-2+i4) dz=(-3.84e+0-i2.88e+0) |f(z)|=9.9e+2
 z[4]=(0.5-i1) dz=(-3.41e-1-i2.60e-2) |f(z)|=2.7e+1

IteraƟon: 3
 z[2]=(8-i2) dz=(4.25e+0-i8.67e+0) |f(z)|=1.3e+3
 z[3]=(2+i3) dz=(-3.27e+0+i1.09e+0) |f(z)|=7.8e+1
 z[4]=(1-i1) dz=(-6.28e-1-i2.13e-1) |f(z)|=9.1e+0

IteraƟon: 4

Fast Polynomial Root Finder -Part Five

Page | 18 18 December 2023

 z[2]=(5.5-i1.0) dz=(2.58e+0-i1.42e+0) |f(z)|=7.7e+1
 z[3]=(3+i2) dz=(-9.58e-1+i1.12e+0) |f(z)|=1.2e+1
 z[4]=(2-i0.6) dz=(-5.74e-1-i4.04e-1) |f(z)|=2.2e+0

IteraƟon: 5
 z[2]=(4.4-i0.49) dz=(1.03e+0-i5.02e-1) |f(z)|=8.4e+0
 z[3]=(3+i0.7) dz=(-3.01e-1+i8.04e-1) |f(z)|=2.2e+0
 z[4]=(2-i0.2) dz=(-3.17e-1-i3.82e-1) |f(z)|=4.8e-1

IteraƟon: 6
 z[2]=(4.0-i0.20) dz=(4.00e-1-i2.95e-1) |f(z)|=1.3e+0
 z[3]=(3+i0.1) dz=(-1.18e-1+i5.77e-1) |f(z)|=3.1e-1
 z[4]=(2.0+i0.00025) dz=(-1.28e-2-i2.28e-1) |f(z)|=2.3e-2

IteraƟon: 7
 z[2]=(3.98-i0.0185) dz=(4.49e-2-i1.81e-1) |f(z)|=1.6e-1
 z[3]=(3.0-i0.0031) dz=(-5.83e-2+i1.48e-1) |f(z)|=1.1e-2
 z[4]=(2.00-i0.000149) dz=(1.18e-2+i3.95e-4) |f(z)|=3.2e-4

IteraƟon: 8
 z[2]=(4.000+i0.00001949) dz=(-1.97e-2-i1.85e-2) |f(z)|=8.7e-4
 z[3]=(3.00+i8.52e-8) dz=(4.26e-3-i3.06e-3) |f(z)|=2.8e-6
 z[4]=(2.0000-i1.1529e-8) dz=(-6.13e-5-i1.49e-4) |f(z)|=2.4e-8

IteraƟon: 9
 Stop Criteria saƟsfied aŌer 9 IteraƟons
 Found a root z[4]=1.9999999999999971 |f(x)|=2.40e-18
 AlteraƟon=0%
 z[2]=(4.00000-i3.84657e-11) dz=(1.44e-4+i1.95e-5) |f(z)|=1.2e-9
 z[3]=(3.000000+i1.619904e-14) dz=(1.39e-6+i8.52e-8) |f(z)|=3.3e-14

IteraƟon: 10
 Stop Criteria saƟsfied aŌer 10 IteraƟons
 Found a root z[2]=3.9999999999999964 |f(x)|=2.13e-14
 AlteraƟon=0%
 Stop Criteria saƟsfied aŌer 10 IteraƟons
 Found a root z[3]=2.9999999999999947 |f(x)|=6.31e-30
 AlteraƟon=0%

Using the Durand-Kerner Method, the SoluƟons are:
X1=1.9999999999999971
X2=2.9999999999999947
X3=3.9999999999999964
X4=1

Example 2.

For the real Polynomial:
+1x^4-8x^3-17x^2-26x-40
Start Durand-Kerner IteraƟon for Polynomial=+1x^4-8x^3-17x^2-26x-40
 IniƟal Stop CondiƟon. |f(z)|<3.55e-14
 Start:

Fast Polynomial Root Finder -Part Five

Page | 19 18 December 2023

 z[1]=1 dz=1.00e+0 |f(z)|=9.0e+1
 z[2]=(0.4+i0.9) dz=(4.00e-1+i9.00e-1) |f(z)|=4.7e+1
 z[3]=(-0.7+i0.7) dz=(-6.50e-1+i7.20e-1) |f(z)|=2.9e+1
 z[4]=(-0.9-i0.3) dz=(-9.08e-1-i2.97e-1) |f(z)|=2.5e+1

IteraƟon: 1
 z[1]=(9+i2e+1) dz=(-7.78e+0-i2.26e+1) |f(z)|=3.3e+5
 z[2]=(0.1+i2) dz=(2.88e-1-i1.03e+0) |f(z)|=4.4e+1
 z[3]=(-1+i0.8) dz=(8.08e-1-i9.07e-2) |f(z)|=3.8e+1
 z[4]=(-0.9-i0.6) dz=(-5.56e-2+i3.28e-1) |f(z)|=2.9e+1

IteraƟon: 2
 z[1]=(1e+1-i2) dz=(-2.29e+0+i2.44e+1) |f(z)|=3.5e+3
 z[2]=(0.1+i1) dz=(1.69e-2+i7.20e-1) |f(z)|=2.5e+1
 z[3]=(-1-i0.3) dz=(-3.15e-1+i1.15e+0) |f(z)|=2.2e+1
 z[4]=(2-i2) dz=(-2.50e+0+i1.34e+0) |f(z)|=2.4e+2

IteraƟon: 3
 z[1]=(9.9+i0.61) dz=(1.18e+0-i2.36e+0) |f(z)|=7.4e+2
 z[2]=(0.2+i2) dz=(-8.43e-2-i3.61e-1) |f(z)|=2.7e+1
 z[3]=(-1.3-i0.13) dz=(1.72e-1-i2.07e-1) |f(z)|=1.5e+1
 z[4]=(-0.4-i2) dz=(2.08e+0-i4.07e-1) |f(z)|=1.7e+1

IteraƟon: 4
 z[1]=(10-i0.025) dz=(-1.12e-1+i6.33e-1) |f(z)|=3.1e+1
 z[2]=(-0.2+i2) dz=(3.73e-1+i1.23e-3) |f(z)|=1.9e+0
 z[3]=(-2-i0.03) dz=(3.76e-1-i9.92e-2) |f(z)|=2.8e+0
 z[4]=(-0.18-i1.6) dz=(-2.53e-1-i1.56e-3) |f(z)|=5.2e-1

IteraƟon: 5
 z[1]=(10.00-i0.0001396) dz=(2.37e-3-i2.50e-2) |f(z)|=1.8e-1
 z[2]=(-0.175+i1.55) dz=(-1.77e-2+i2.03e-2) |f(z)|=4.8e-2
 z[3]=(-1.7+i0.000043) dz=(-3.97e-2-i3.07e-2) |f(z)|=9.0e-3
 z[4]=(-0.175-i1.55) dz=(-1.54e-3-i7.45e-3) |f(z)|=1.6e-4

IteraƟon: 6
 z[1]=(10.0000-i1.10034e-8) dz=(5.34e-5-i1.40e-4) |f(z)|=1.5e-5
 z[2]=(-0.1747+i1.547) dz=(-3.62e-4+i5.99e-4) |f(z)|=3.8e-6
 z[3]=(-1.6506+i1.1970e-10) dz=(-1.63e-4+i4.35e-5) |f(z)|=9.8e-9
 z[4]=(-0.1746854-i1.546869) dz=(6.66e-7-i2.18e-6) |f(z)|=2.8e-12

IteraƟon: 7
 Stop Criteria saƟsfied aŌer 7 IteraƟons
 Found a root z[2]=(-0.17468540428030596+i1.5468688872313963) |f(x)|=7.11e-15
 AlteraƟon=0%
 Stop Criteria saƟsfied aŌer 7 IteraƟons
 Found a root z[3]=-1.6506291914393882 |f(x)|=2.13e-14
 AlteraƟon=0%
 Stop Criteria saƟsfied aŌer 7 IteraƟons
 Found a root z[4]=(-0.17468540428030596-i1.5468688872313963) |f(x)|=7.11e-15
 AlteraƟon=0%
 z[1]=(10.00000000+i4.467037524e-17) dz=(-4.71e-9-i1.10e-8) |f(z)|=5.5e-12

Fast Polynomial Root Finder -Part Five

Page | 20 18 December 2023

IteraƟon: 8
 Stop Criteria saƟsfied aŌer 8 IteraƟons
 Found a root z[1]=10 |f(x)|=1.90e-28
 AlteraƟon=0%

Using the Durand-Kerner Method, the SoluƟons are:
X1=(-0.17468540428030596-i1.5468688872313963)
X2=-1.6506291914393882
X3=(-0.17468540428030596+i1.5468688872313963)
X4=10

Other Weierstrass-like simultaneous methods without the use of the
derivatives

There are a few spin-off methods from the Durand-Kerner. There is Tanabe's [12] third-order
method:

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

− 𝑊௜
(௞)

(1 − ෍
𝑊௝

(௞)

𝑥௜
(௞)

− 𝑥௝
(௞)

௡

௝ୀଵ,௝ஷ௜

) 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 0,1, …

Which offers a third-order convergence rate.

And there is Nourein [12] a fourth-order method also based on the Wierstrass corrections:

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

−
𝑊௜

(௞)

1 + ∑ (
𝑊௝

(௞)

𝑥௜
(௞)

− 𝑊௜
(௞)

− 𝑥௜
(௞))௡

௝ୀଵ,௝ஷ௜

With the Durand-Kerner present here it is relatively simple to implement the two spins-off
method.

Aberth-Erhlich simultaneous method
Another closely related method is the Aberth-Erhlich from 1967 [13]. This method also finds all
the roots simultaneously however requires the use of the Polynomial first derivate P’(x)

It is a very robust method and has been implemented in the MPSolve software package. It is a
third-order convergence method although it only approaches roots with multiplicity greater than

one with linear convergence. Aberth-Ehrlich efficiency index is 3
భ

మ = 1.73

Fast Polynomial Root Finder -Part Five

Page | 21 18 December 2023

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

−

𝑃 ቀ𝑥௜
(௞)

ቁ

𝑝ᇱ ቀ𝑥௜
(௞)

ቁ

1 −
𝑃 ቀ𝑥௜

(௞)
ቁ

𝑝ᇱ ቀ𝑥௜
(௞)

ቁ
∑

1

ቀ𝑥௜
(௞)

− 𝑥௝
(௞)

ቁ

௡
௝ୀଵ,௝ஷ௜

 𝑖 = 1, … , 𝑛 ; 𝑘 = 0,1, …

Aberth in his original paper [13] also describes suitable starting points for all roots.

Recommendation
Although the efficiency index is higher for the Durand-Kerner than for Newton’s method it is
generally not recommended to use the modified Durand-Kerner method over the Newton’s
method. The reason in my viewpoint is that the modified Newton method presented in part One
and part two is usually much faster to get a tracking to a root and therefore use fewer iterations
than Durand-Kerner. I recommend sticking with the Newton method presented in Parts One and
Two. However, if you decide to use the Durand-Kerner it is still a solid choice of a good and
efficient polynomial root finder method.

Conclusion
We have presented a refined Durand-Kerner method, building upon the framework established in
part one and part two, despite the Durand-Kerner being quite different. Part Six will demonstrate
the ease of integrating alternative multi-point methods. A web-based polynomial solver
showcasing these various methods is available for further exploration and can be found on
Polynomial roots that demonstrate many of these methods in action.

Reference

1. H. Vestermark. A practical implementation of Polynomial root finders. Practical
implementation of Polynomial root finders vs 7.docx (www.hvks.com)

2. Madsen. A root-finding algorithm based on Newton Method, Bit 13 (1973) 71-75.
3. A. Ostrowski, Solution of equations and systems of equations, Academic Press, 1966.
4. Wikipedia Horner’s Method: https://en.wikipedia.org/wiki/Horner%27s_method
5. Adams, D A stopping criterion for polynomial root finding.

Communication of the ACM Volume 10/Number 10/ October 1967 Page 655-658
6. Grant, J. A. & Hitchins, G D. Two algorithms for the solution of polynomial equations to

limiting machine precision. The Computer Journal Volume 18 Number 3, pages 258-264
7. Wilkinson, J H, Rounding errors in Algebraic Processes, Prentice-Hall Inc, Englewood

Cliffs, NJ 1963
8. McNamee, J.M., Numerical Methods for Roots of Polynomials, Part I & II, Elsevier,

Kidlington, Oxford 2009

Fast Polynomial Root Finder -Part Five

Page | 22 18 December 2023

9. H. Vestermark, “A Modified Newton and higher orders Iteration for multiple roots.”,
www.hvks.com/Numerical/papers.html

10. M.A. Jenkins & J.F. Traub, ”A three-stage Algorithm for Real Polynomials using
Quadratic iteration”, SIAM J Numerical Analysis, Vol. 7, No.4, December 1970.

11. H.A. Yamani, A.D. Alhaidari, Iterative polynomial-root-finding procedure with enhanced
accuracy, Saudi Center for Theoretical Physics, Saudi Arabia.

12. M. Petkovic, D. Herceg, S.Ilic, Safe convergence of simultaneous methods for
polynomial zeros. Numeric Algorithm 17 (1998) 313-3312

13. O. Aberth, Iteration Methods for finding all zeros of a Polynomial Simultaneously,
Mathematics Computation, Vol 27, Number 122, April 1973

